
Abstract -- Future orbiting sensor constellations will consist of
tens, hundreds, or even thousands of spacecraft, each capable of
generating enormous amounts of data. Managing these
constellations will require that the spacecraft be autonomous,
deciding without human intervention what observations to make
and asynchronously reporting results. The need for a robust
and efficient shared network infrastructure combined with the
desire to provide direct connectivity between orbiting
instruments and scientists on the Internet argues for connecting
these sensor constellations directly to the Internet.

This paper describes our implementation of an architecture to
connect sensor constellations to the Internet based on open
standards (Internet and CCSDS protocols). The main elements
are: 1) Security (access control, authentication, and encryption)
provided by a mix of IPSEC and the more 'space-link-friendly'
SCPS-SP security protocols 2) a MobileIP implementation that
takes advantage of scheduled contacts to reduce the overhead
involved in setting up MobileIP tunnels 3) Resource reservation
mechanisms that allow applications to ensure that data are not
lost and/or are delivered in a timely manner and 4) a link-layer
driver that allows us to easily connect ground and space
networks.

In a previous paper [1 we verified the feasibility of the above
elements in isolation and quantified the performance
enhancements they provided though simulation and rapid
prototyping. We have recently integrated the elements into an
end-to-end prototype, and describe here their implementations.
We include information on the standards used, how they have
been modified for the particular environment, and the steps
required to integrate them into a complete system. We note that
the changes to existing standards are minimal and are confined
to a small set of hosts that could reasonably be assumed to be
under the control of the spacecraft operators; we require no
modification to the underlying bearer network, which we
assume to be the Internet.

I. INTRODUCTION

A. Communications Paradigms

Current space missions rely on highly managed
communications. This works well when there are relatively
few space assets, where communication with each can be
independently scheduled, and where data volumes are
predictable. This model does not hold in the sensor web of
semi-autonomous spacecraft that we see as the future of
Earth-observing science.

Orbiting sensor webs of semi-autonomous spacecraft will
require advanced networks to support their dynamic and
unpredictable communications requirements. Multiple
spacecraft with highly efficient protocols will need to
dynamically share downlinks to support both “quick-look”
data to scientists and to respond to unscheduled events of
interest.

The Internet provides a good example of a scalable, robust,
efficient, and adaptive network architecture that could
support future orbiting sensor webs. Use of Internet
Protocols in the space segment is particularly attractive
because it provides for easy interconnection with the
terrestrial Internet. This will allow scientists more control
over their experiments and faster, easier access to their data.

Section II provides an overview of the mechanisms necessary
to provide real-time communications between orbiting
elements and hosts on the Internet. Section III describes the
system architecture, and section IV the implementation
details of the four areas of section II. Section V contains
concluding remarks and areas of future study.

II. MECHANISMS FOR REAL-TIME COMMUNICATIONS

Four main elements are required in order for us to connect
space assets with ground-based PIs: 1) Security, 2) MobileIP,
3) Resource Reservation, and 4) an efficient and space-tuned
link layer. This section gives a brief outline of these
mechanisms; section III describes in detail their instantiations
in the end-to-end prototype.

1) Security

Allowing direct access to space assets from hosts on the
Internet requires security. Authentication to ensure that only
authorized users are granted access to the space link and
encryption to ensure the privacy of science data are both
primary concerns. Under joint DoD/NASA sponsorship, a set
of Internet protocols were specified for use in bandwidth
constrained environments. This work, known collectively as
the Space Communications Protocol Suite (SCPS) includes a
Security Protocol, known as SCPS-SP [2]. SCPS-SP
provides the same security services as its Internet counterpart,
IPSec, but with significantly less overhead. Transport-layer
performance-enhancing proxies developed as part of the
SCPS work can also host security gateways, translating
between IPSEC and SCPS-SP. We use these gateways to

James Noles
Global Science and Technology, Inc.

6411 Ivy Lane, Suite 300
Greenbelt, MD 20770

Keith Scott, Mary Jo Zukoski
The MITRE Corporation

1820 Dolley Madison Blvd.
McLean, VA 22102-3481

Howard Weiss
SPARTA, Inc.

9861 Broken Land Parkway
Columbia, MD 21046

Next-Generation Space Internet:
Prototype Implementation

allow terrestrial users to employ IPSEC while maintaining the
efficiency of SCPS-SP across the space link.

During the development of the SCPS protocols, the key
management and algorithm aspects the security protocol were
not addressed. As a result, this work has undertaken the
addition of encryption algorithms to the existing SCPS
gateways, has done an analysis of key management
techniques, and has concluded that the use of the Internet Key
Exchange (IKE), despite its overhead, is preferable to the
development of a custom key exchange protocol. A version
of IKE is being modified to operate with SCPS-SP on the
SCPS gateways.

2) MobileIP

Mobile IP, as specified in RFC 2002 [3], was designed to
permit mobile agents to move randomly through the Internet
while still receiving datagrams at a fixed address. A moving
spacecraft, connecting first to one ground station and then to
another, fits the definition of a mobile agent. It is natural,
then, to want to apply MobileIP to the spacecraft
environment. However, the protocol overhead required for
each ground station connection is not conducive for real time
communication. On the other hand, spacecraft do not move
randomly. Contacts between spacecraft and ground stations
are scheduled, with a priori agreement of established state.
Our work takes advantage of this agreement and has
implemented extensions to MobileIP, allowing for real-time
user-to-payload interaction.

3) Resource Reservation

Because of the expense and scarcity of bandwidth between
space assets and the ground, preventing data loss and
subsequent retransmission is of great concern. This is
particularly difficult in the case where multiple semi-
autonomous spacecraft need to share communications
resources in a controlled manner and in an automated fashion.
The Resource reSerVation Protocol (RSVP) used in the
Internet can prevent data loss due to congestion by allowing
flows to reserve bandwidth and buffer space in intermediate
routers. Our work with RSVP has been to adapt it to our
environment and to integrate it with the other work packages,
specifically MobileIP and the security gateways mentioned
above.

4) Efficient Data Link Layer for Space Communications

Conventional CCSDS links transport relatively statically
scheduled streams of CCSDS data units encapsulated in
virtual channels that may be transferred over several physical
links to a control or processing center. In an internetworking
environment, however, the virtual channels will transport
dynamically changing streams of Internet Protocol packets
that are extracted and routed at each spacecraft in a network
before being routed to the ground. We have developed an
efficient driver for packing, transporting, and extracting IP
packets for each space link in the Internetwork. This driver

implements the CCSDS Telecommand and Telemetry [4, 5,
6] standard mechanisms for multiplexing and demultiplexing
IP packets into/from CCSDS data links.

III. SYSTEM ARCHITECTURE

The general system architecture is shown in figure 1, where
different horizontal bands represent different views of the
system. At the top are the physical components:
Investigators, a Control Center, a Ground Station, and
possibly multiple spacecraft between the ground station and
the destination. These represent the minimum set of hosts
required to make the system function, and the set of hosts on
which the software we have developed runs. Note that we
make no assumption about the networks connecting the
control center to either investigators or the groundstation.
One advantage of our architecture is that these can be
completely open networks, including the Internet.

The ‘security’ band highlights the security aspects of the
architecture, namely a set of security gateways that translate
between IPSEC and the more bit-efficient SCPS-SP
protocols. The IP band highlights the need for two IP
tunnels. One tunnel handles forward (from the PI to the
spacecraft) traffic, and the other ensures that reverse traffic is
routed through the security gateway at the control center.
The bottom band illustrates how the different flows appear to
RSVP. In particular, a single unidirectional flow has four
states: encapsulated in IPSEC, encapsulated in SCPS-SP and
tunneled inside a MobileIP tunnel, encapsulated in SCPS-SP,
and “native” (unencrypted and not tunneled) While we have
not implemented security on board the destination spacecraft
in our prototype, its addition would be a simple matter.

S/C S/C
PI HA INSG FA Space Link SG

CCSDS Link Layer

PI Principal Investigator
SG Security Gateway
HA Home Agent
FA Foreign Agent
IN Instrument

RSVP

Security

IP

GroundstationControl Center

IPSEC SCPS-SP None

SCPS-SPIPSEC None

 IPMobileIP Tunnel

CCSDS Link Layer

Space Link

IP GRE Tunnel

 PI/IN SPRFC 2746-like HA/FA IP-IPPI/IN IPSEC [GPI] PI/IN

 IN/PI SPRFC 2746-like FA/HA IP-IPIN/PI IPSEC [GPI] IN/PI

Internet

Investigator

Fig. 1: System Architecture

For our proof-of-concept demonstration we chose Intel-based
machines running the FreeBSD (4.2) and Linux (2.4.x)
operating systems to emulate the various system components
shown in Fig. 1. Each machine was equipped with three
100Mbps network interfaces, one of which was used to
control the processes running on the machine and the other
two of which supported test traffic. One of the machines

adjacent to the simulated space links also hosted a software
delay and error injector (NISTNet).

IV. IMPLEMENTATION DETAILS

This section discusses the implementation details of our
prototype system. We note here that the basic requirements
to implement the architecture are: security gateways at the
control center and onboard each spacecraft requiring security;
a MobileIP Foreign Agent in each groundstation; and an
RSVP-capable network connecting the groundstation to the
Internet users.

A. Security

Once relegated to back-burner status in the IT and network
communities, security has recently become a hot topic due to
ubiquitous Internet connectivity and ubiquitous Internet
security breaches. From the outset, the SCPS design,
specification, and development took security into account.
As a result, the SCPS Security Protocol (SCPS-SP) was
developed.

At the time SCPS-SP was being designed, there was not a
finished IPSec protocol specification. There were several
earlier attempts to define Internet security protocols, most
notably by the DoD in their Security Protocol at Layer Three
(SP-3) specification. However, none of those security
protocols took into account bandwidth constraints; all of them
assumed large amounts of terrestrial bandwidth. Conversely,
SCPS and the SCPS Security Protocol were being designed
for use in limited bandwidth environments with high delays
and high errors. As a result, SCPS-SP became a “light-
weight” cousin of SP-3 and the emerging IETF IPSec.

The reference implementation of the SCPS protocols includes
a transport-layer gateway that can convert from Internet
protocols to SCPS versions of those protocols. As part of
this work, the SCPS gateways were extended to provide full
security interoperability between IPSec and SCPS-SP. Tests
were performed over the Internet with British collaborators
using Internet-standard IPSec to a SCPS gateway which in
turn used SCPS-SP to communicate with a peer SCPS
gateway. The second gateway then removed all security for

delivery to a simulated on-board instrument (or in this test
case, a web server). The setup is shown in fig. 2.

The SCPS-SP specification is algorithm neutral. That is, it
specifies the protocol but does not specify the algorithms to
be used to provide security. In the SCPS-SP reference
implementation, for testing purposes, a simple XOR
algorithm was used in place of an actual encryption
algorithm. For this project we have added two encryption
algorithms to the SCPS-SP reference code and the SCPS
gateway: the (former) U.S. Data Encryption Standard (DES),
and a stronger variant known as triple DES (3DES).

Another aspect of security that was not addressed in the
earlier SCPS work was key management and key distribution.
Testing of SCPS-SP was carried out with manually
distributed and installed cryptographic keys. For large-scale
use, an automated means of distributing and managing keys is
necessary. In order to provide key management for the space
environment, a tradeoff study was performed to examine
what key management protocols were already in use, their
strengths and weaknesses, and whether or not they could be
used or adapted for the space community. Alternatively, if
none of the existing key management protocols could be
used, then a custom protocol would have to be designed.

The Internet community has developed a protocol known as
the Internet Key Exchange (IKE). This was one of the
leading contenders for use in the space environment from
several perspectives. First, it is the Internet standard and
therefore implementations would exist via the open-source
community as well as commercially off-the-shelf. Its
adoption would also allow complete interoperability between
ground-based and space-based assets requiring cryptographic
keys. However, IKE is a “heavy-weight” protocol with a
considerable amount of overhead and it uses several round-
trip messages to perform its work. As a result of the key
management analysis study, it was determined that although
IKE had considerable overhead, it was invoked infrequently
and therefore the overhead would be bearable over
constrained bandwidth links.

As a result of the analysis, the version of IKE written for
FreeBSD is being modified for use with SCPS-SP in the
SCPS gateway environment. The Racoon implementation of
IKE assumes the use of an internal, kernel-owned key cache
that is not used by the out-of-kernel SCPS protocols. As a
result, changes to both SCPS-SP and Racoon are being made
to allow the key exchange to occur and for the SCPS gateway
to obtain the keys for use in secure communications.

B. Extensions to MobileIP

As stated in the Introduction, MobileIP is a natural “fit”,
conceptually, to a space-ground communications system. And
while certain characteristics of such a system limit the direct
applicability of the protocol, other characteristics – namely, a
priori knowledge of contact periods, ground station

Figure 1: IPSec to SCPS-SP Security Interoperability

End User
SCPS
GW1

SCPS
GW2 Web Server

TCP/IP/IPSEC
w/ IKE/IP

SCPS-TP
SCPS-SP
IP

TCP/IP

addresses, etc. – provide for minimal changes to overcome
the limitations.

The basic idea of standard MobileIP is that if the mobile node
is away from its home, a care-of address is associated with it
that provides information as to its current point of attachment
to the Internet. The mobile node registers this care-of address
with its home agent, who tunnels datagrams destined for the
mobile agent to this care-of address. MobileIP specifies a
preferred method of acquiring a care-of address through
foreign agents, where the foreign agent acts as the endpoint
of the tunnel, decapsulates received datagrams, and delivers
them to the mobile node. This setup, while straightforward,
may be too time- and bandwidth-consuming in the limited
resource environment of spacecraft communication.

Consider the spacecraft to be a mobile node, the ground
station as foreign agent, and the control center as home agent.
Then making use of the a priori knowledge of state, the
ground station (in its role as foreign agent) can act as a proxy
for the mobile node. Knowing that the spacecraft is about to
make contact, the ground station pre-registers with the
control center and sets up the tunnel. The objective is for
datagrams destined for the spacecraft to arrive as the space-
ground contact is established. (Note: This is an application of
the Just-in-Time scheduling used in many manufacturing
operations.) From its perspective, the spacecraft assumes
foreign agent and tunnel functionality will be in place and
prepares any outgoing datagrams for download.

For connection termination, the next ground station will
begin the proxy registration slightly before the current station
reaches loss-of-signal (LOS). This prevents an undue
number of dropped datagrams due to misrouting – which can
result if the current tunnel is still in place after LOS is
achieved. If the next tunnel is established slightly before its
ground station makes contact, the station will queue the data.

We have incorporated these modifications to the base
protocol of the Dynamics – HUT MobileIP system [7]. This
is a Linux implementation of Mobile IP, which we installed
on a Red Hat 7.1 distribution. The mobile node, foreign agent
and home agent were run on different machines. The IP-in-IP
tunneling support was loaded and configured as a kernel
module.

C. Resource Reservation

RSVP is an end-to-end protocol for resource reservation, and
hence touches all of the other work areas. This section
describes the modifications to the ISI reference
implementation of RSVP [8] that allow it to function in the
architecture described above.

The security gateways present a special challenge to RSVP,
as the RSVP design did not anticipate cases where the IP
protocol field changes in transit. To preserve reservations as
flows change security measures, the RSVP daemons on the

security gateways were modified to manipulate the IP
protocol fields of RSVP filterspec messages. Thus RSVP
messages that arrive reserving IPSEC flows leave reserving
SCPS-SP flows, and vice versa.

The MobileIP tunnels used to forward data between home
and foreign agents also required changes to the RSVP
daemons running on those hosts. RFC 2746[9] defines
mechanisms to allow RSVP to operate over IP tunnels, but no
suitable implementation existed for the Linux operating
system (we chose the HUT MobileIP implementation, which
runs under Linux). We thus plan to implement the tunnel
functionality described in RFC2746 in the Linux RSVP
implementation. This requires an IP-in-UDP encapsulation
mechanism so that RSVP could distinguish between tunneled
flows (all of which have the same source and destination IP
addresses – those of the tunnel endpoints).

The Crypto IP Encapsulation (CIPE [10]) distributed with
recent Linux kernels provides IP-in-UDP encapsulation (with
optional encryption). However the interface required to set
up and manage CIPE tunnels is significantly different from
that used for managing the IP-in-IP tunnels that the HUT
MobileIP daemon expects. In addition, CIPE was designed
for VPN-type applications, where manual administration of
tunnels is feasible. For our application we needed a system
capable of dynamic tunnel management via an application
programming interface (API) rather than a configuration file.

We thus chose to modify the IP-in-IP driver to include an
extra UDP header. Issues with this approach include
changing the Maximum Transfer Unit (MTU) to avoid IP
fragmentation, the ability of RSVP to correctly identify the
interface (since the IP-in-UDP interfaces are not physical
interfaces) and the performance of traffic control over these
interfaces. The MTU issues are easily solved at the endpoints
or the transport-layer gateways, and the Linux RSVP
implementation does recognize the virtual drivers as
interfaces.

We found that the performance of the various traffic control
mechanisms varied widely depending on the operating
system and link layer. The goal was to characterize the
traffic control characteristics to determine their impact on
overall performance. In particular, there are known issues
with the class-based queueing (CBQ [11]) mechanisms used
in both the Linux and FreeBSD implementations that can
cause them to under-perform, especially when examined over
short time periods. For a deployed system we would be
relying on the traffic shaping of the routers (e.g. Cisco,
Juniper, …), which is considerably better than the Linux or
FreeBSD implementations.

For our system, CBQ was provided by the altq package [12]
in FreeBSD and by the native 2.4-kernel traffic control [13]
in Linux. As a first measure, we simply examined the traffic
control mechanisms’ abilities to shape traffic. This provides
the foundation for resource reservation, as we would like to

be able to provide minimums for both reserved and non-
reserved traffic, as well as to allow each to borrow unused
bandwidth from the other.

For plain, non-encapsulated IP traffic, the Linux cbq provided
much better performance, able to shape traffic to within a few
hundred kilobits per second of the target rate, and provided
good borrowing properties between classes. The altq
implementation was much coarser, generally over-limiting
bandwidth by several megabits per second. Linux traffic
control performance dropped dramatically when used over an
encapsulating interface (either the IP-in-UDP or the CCSDS
links). In these cases linux tc’s ability to rate control traffic
approached altq’s. This should not pose significant problems
at low data rates, but could significantly impact performance
as data rates increase past around 10Mbps.

D. Ethernet Like Link Layer for CCSDS Links

The most common link layer interface for Internet
communication is Ethernet. In this implementation a Linux
driver for CCSDS was developed that behaves exactly as an
Ethernet interface from the viewpoint of the network layer.
This driver segments and inserts IP packets into fixed length
CCSDS frames and transports them in a virtual channel to a
companion driver at the other side of the link. The
companion driver then extracts and reassembles the packets
and passes them to the local network layer entity as if it were
a local Ethernet.

In the laboratory the CCSDS driver uses Ethernet to transport
the CCSDS frames across the link. The driver is layered such
that the underlying Ethernet link can be easily replaced with
other link protocols. For instance, the Ethernet link can be
replaced with a serial interface to radio frequency equipment
for implementation in a space to space or space to ground
implementation. This architecture allows applications to be
developed in the laboratory for common Ethernet
implementation and then transferred to a CCSDS based link

environment with no changes.

V. CONCLUSIONS AND FUTURE WORK

We have presented an overview of the prototype
implementation for the Next Generation Space Internet
architecture.

Significant areas of future work remain. These include
shearing off the bottom half of the CCSDS link driver to
allow it to run over serial interfaces (for easy connectivity to
uplink devices) and evaluating system performance at higher
data rates.

REFERENCES

[1] Noles, J., Scott, K., Weiss, H., and Zukoski, M.J., Next
Generation Space Internet, ESTC conference, August
2001, College Park, MD.

[2] Space Communications Protocol Standards - Security
Protocol, CCSDS 713.5-B-1, CCSDS, May 1999.

[3] C. Perkins, "IP Mobility Support", RFC 2002, October
1996.

[4] Telecommand Part 1 -- Channel Service, CCSDS 201.0-
B-3, June 2000.

[5] Telecommand Part 2 -- Data Routing Service, CCSDS
202.0-B-3, June 2001

[6] Packet Telemetry, CCSDS 102.0-B-5, November 2000
[7] MobileIP Implementation: Dynamics - HUT MobileIP,

http://www.cs.hut.fi/Research/Dynamics/.
[8] Braden, R., Zhang, L., Berson, S., Herzog, S., Jamin, S.,

“Resource ReSerVation Protocol (RSVP) -- Version 1
Functional Specification,” RFC 2205, September 1997,
Proposed Standard.

[9] Terzis, A, Krawczyk, J., Wroclawski, J., and Zhang, L.,
“RSVP Operation Over IP Tunnels,” RFC2746, January
2000.

[10] http://sites.inka.de/sites/bigred/devel/cipe.html
[11] Floyd, S., and Jacobson, V., “Link-sharing and

Resource Management Models for Packet Networks,”
IEEE/ACM Transactions on Networking, Vol. 3 No. 4,
pp. 365-386, August 1995.

[12] Kenjiro Cho, The Design and Implementation of the
ALTQ Traffic Management System, Ph.D. dissertation,
Keio University. January 2001.

[13] Hubert, Bert, Maxwell, Gregory, van Mook, Remco,
van Oosterhout, Martijn, Schroeder, Paul B., and
Spaans, Jasper, “Linux Advanced Routing & Traffic
Control HOWTO”, http://lartc.org

Figure 3: CCSDS Link Driver

Space Side Network Layer Entity

Fill Data

CCSDS Telemetry Frame

Telecommand Packet

and / or

Sp
ac

e
Si

de
 D

riv
er

Telemetry
Packet Queue

Telecommand
Frame Queue

Ethernet Ethernet

Ethernet Ethernet

Ground Side Network Layer Entity

Telemetry
Frame Queue

Telemetry Packet

CCSDS Telcommand Frame

Telemetry
Frame Queue

G
ro

un
d

Si
de

 D
riv

er

